

Please write clearly in	block capitals.		
Centre number		Candidate number	
Surname			
Forename(s)			
Candidate signature			

A-level CHEMISTRY

Paper 3

Wednesday 19 June 2019 Morning

Materials

For this paper you must have:

- the Periodic Table/Data Sheet, provided as an insert (enclosed)
- a ruler with millimetre measurements
- a scientific calculator, which you are expected to use where appropriate.

Instructions

- Use black ink or black ball-point pen.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer the questions in the spaces provided. Do **not** write outside the box around each page or on blank pages.
- All working must be shown.
- Do all rough work in this book. Cross through any work you do not want to be marked.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 90.

Advice

• You are advised to spend about 70 minutes on Section A and 50 minutes on Section B.

Time allowed: 2 hours

For Examiner's Use		
Question	Mark	
1		
2		
3		
4		
5		
Section B		
TOTAL		

	Section A	
	Answer all questions in this section.	
0 1	Sodium thiosulfate reacts with dilute hydrochloric acid as shown.	
	$Na_2S_2O_3(aq) + 2HCI(aq) \rightarrow 2NaCI(aq) + SO_2(g) + S(s) + H_2O(I)$	
01.1	Give the simplest ionic equation for this reaction.	[1 mark]
01.2	The gas SO_2 is a pollutant.	
	State the property of SO_2 that causes pollution when it enters rivers.	
	Give an equation to show the reaction of SO_2 with water.	[2 marks]
	Property	
	Equation	

0 1.3	Draw a diagram to show the shape of a molecule of H ₂ O Include any lone pairs of electrons. State the H–O–H bond angle. Explain this shape and bond angle. [4 marks] Diagram	Do not write outside the box
	Bond angle	
	Question 1 continues on the next page	

Do not write outside the

box

01. **4** The initial rate of the reaction between sodium thiosulfate and hydrochloric acid can be monitored by measuring the time taken for a fixed amount of sulfur to be produced.

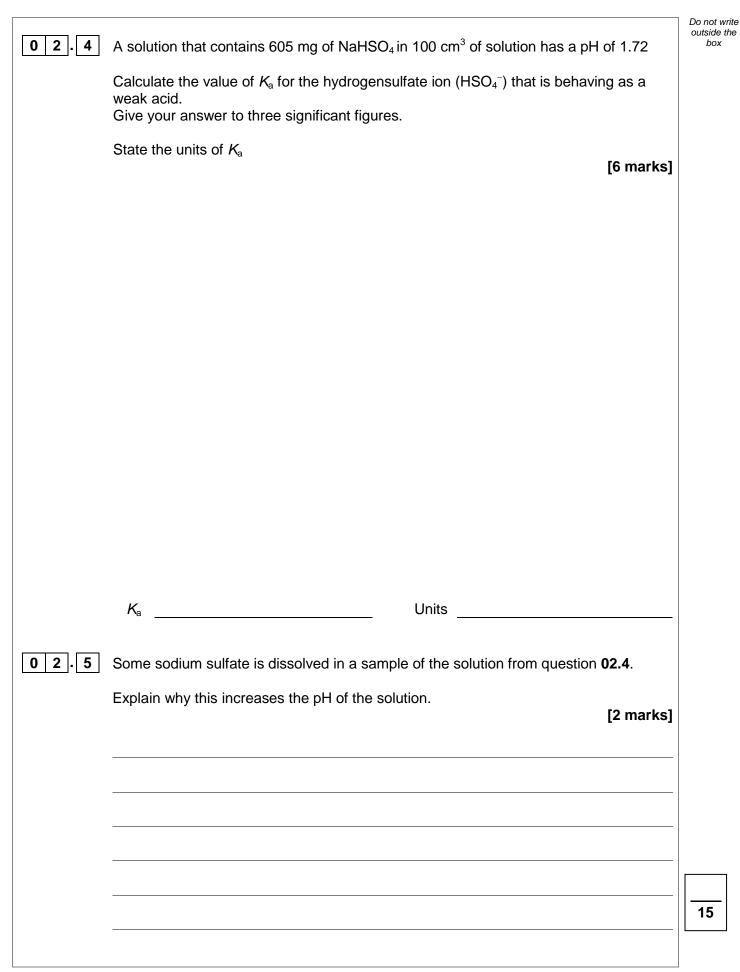
Describe an experiment to investigate the effect of temperature on the initial rate of this reaction.

Include

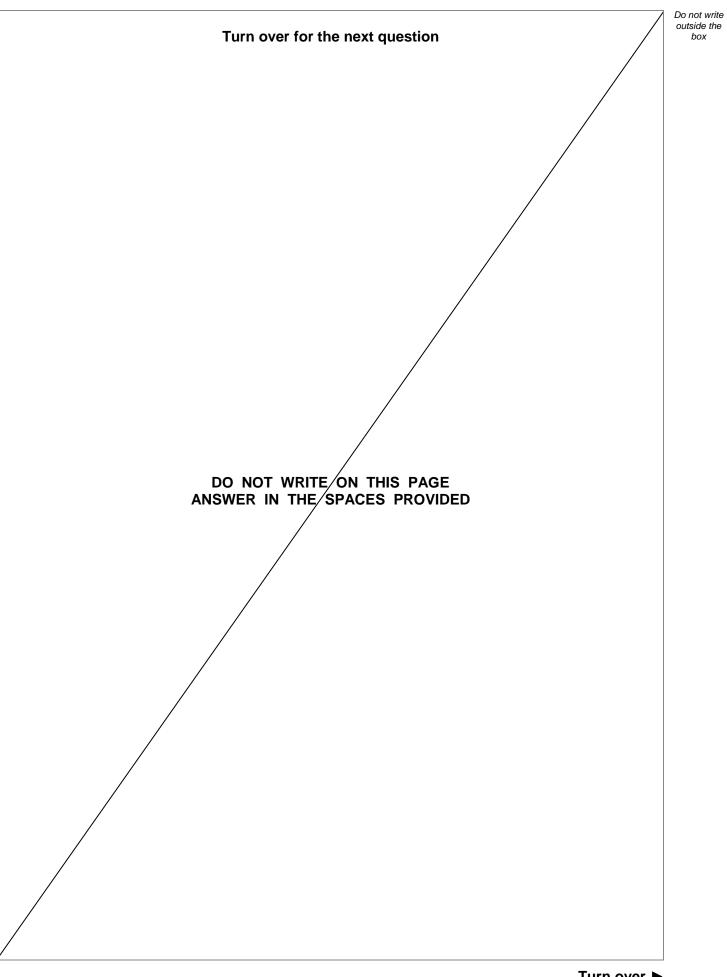
- a brief outline of your method
- how you will measure the time taken for a fixed amount of sulfur to be formed
- how you will present your results in graphical form
- a sketch of the graph that you would expect.

[6 marks]

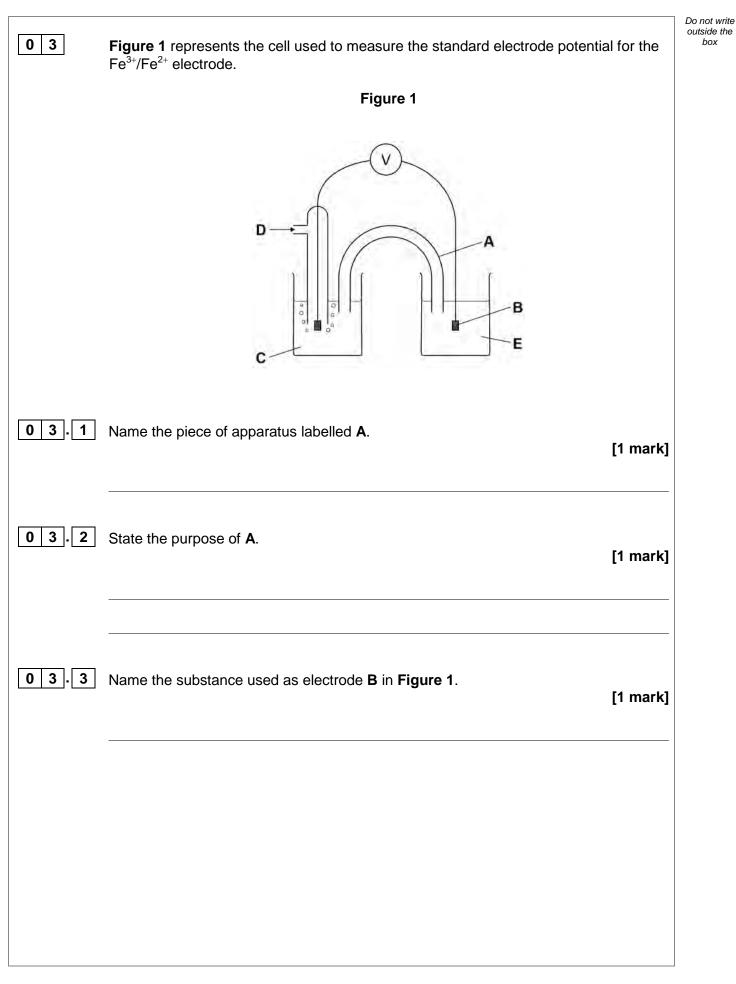
Do not write outside the box



		-
02	This question is about sulfuric acid and its salts.	Do not write outside the box
02.1	Draw the displayed formula of a molecule of H_2SO_4 [1 mark]	
02.2	In aqueous solution, sulfuric acid acts as a strong acid. The H_2SO_4 dissociates to form HSO_4^- ions and H^+ ions.	
	The HSO_4^- ions act as a weak acid and dissociate to form SO_4^{2-} ions and H^+ ions.	
	Give an equation to show each stage in the dissociation of sulfuric acid in aqueous solution.	
	Include appropriate arrows in your equations. [2 marks]	
	Equation 1	
	Equation 2	



02.3	A student is required to make 250 cm ³ of an aqueous solution that contains an accurately measured mass of sodium hydrogensulfate (NaHSO ₄).	Do not write outside the box
	Describe the method that the student should use to make this solution. [4 marks]	
	Extra space	
	Question 2 continues on the next page	



box

0 3.4		te Table 1 to identify C , D and E from the essential conditions for each.	Figure 1. [4 mai	Do no outsic bo	
	Table 1			-	
		Identity	Conditions		
	С				
	D				
	E				
03.5	 0 3.5 The standard electrode potential, <i>E</i>^e, for the Fe³⁺/Fe²⁺ electrode is +0.77 V Give the ionic equation for the overall reaction in the cell in Figure 1. State the change that needs to be made to the apparatus in Figure 1 to allow the cereaction to go to completion. 				
	lonic eq Change	uation		r ks]	
		Question 3 continues on the	e next page		

Do not write outside the

box

0 3 . 6 A student sets up a cell as shown in the cell representation.

Zn(s)|Zn²⁺(aq)||Cu²⁺(aq)|Cu(s)

The student measures the cell EMF, E_{cell} , with several different concentrations of Cu^{2+} ions and Zn^{2+} ions.

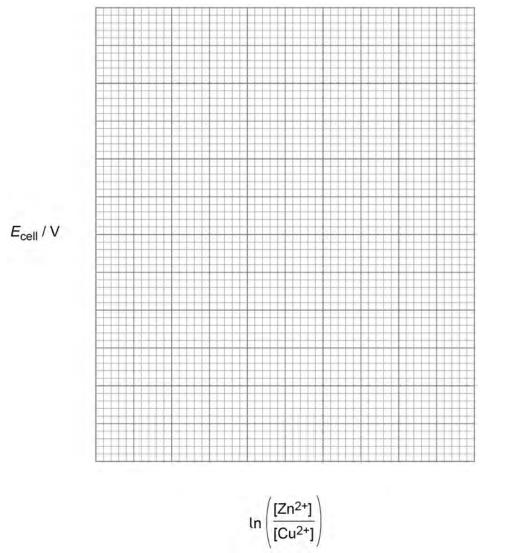

The results are shown in Table 2.

Table 2				
Experiment	[Zn ²⁺] / mol dm ⁻³	[Cu ²⁺] / mol dm ⁻³	$\ln\left(\frac{[Zn^{2+}]}{[Cu^{2+}]}\right)$	E _{cell} / V
1	0.010	1.0	-4.61	1.16
2	0.10	1.0	-2.30	1.13
3	1.0	1.0	0.00	1.10
4	1.0	0.10		1.07
5	1.0	0.010	4.61	1.04

Complete Table 2 to show the value missing from experiment 4.

Plot a graph of E_{cell} against In ([Zn^{2+}]/[Cu^{2+}]) on the grid.

[3 marks]

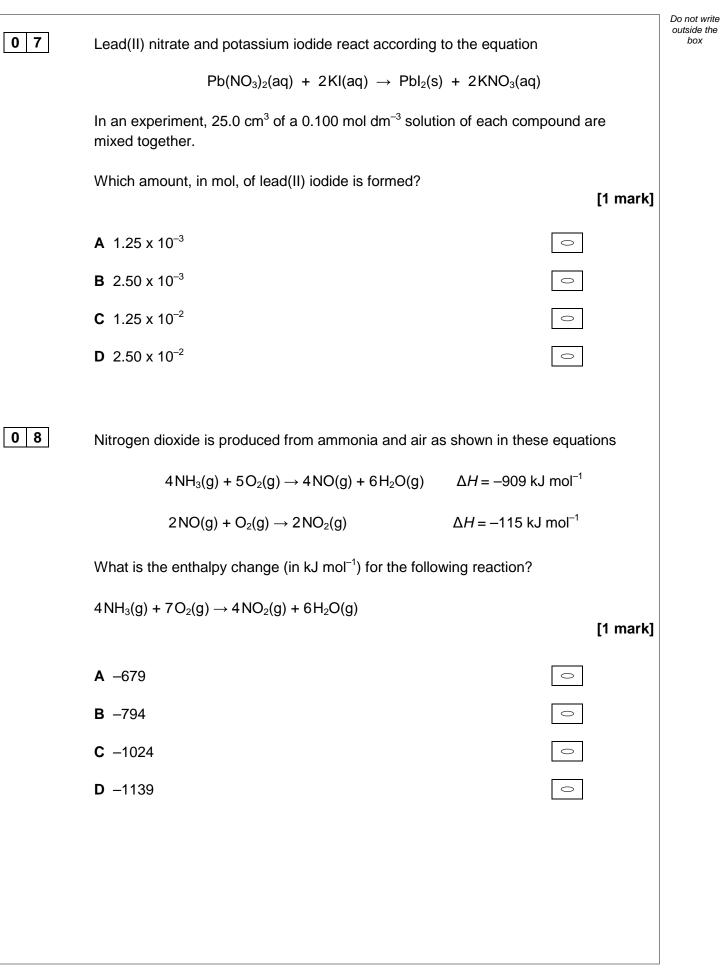
		Do not write		
0 3.7	This equation shows how E_{cell} varies with concentration for this reaction.	outside the box		
	$E_{\text{cell}} = (-4.3 \times 10^{-5} \times 7) \ln \left(\frac{[\text{Zn}^{2+}]}{[\text{Cu}^{2+}]} \right) + E_{\text{cell}}^{\Theta}$			
	This equation is in the form of the equation for a straight line, $y = mx + c$			
	Calculate the gradient of your plotted line on the graph in question 03.6 . You must show your working.			
	Use your gradient to calculate the temperature, T , at which the measurements of E_{cell} were taken.			
	(If you were unable to calculate a gradient you should use the value –0.016 V This is not the correct value.)			
	[3 marks]			
	GradientV			
	ТК			
0 3.8	In experiment 2 in Table 2 the electrode potential of the Cu^{2+}/Cu electrode is +0.33 V			
	Use data from Table 2 in question 03.6 to calculate the electrode potential for the Zn^{2+}/Zn electrode in experiment 2 .			
	Give one reason why your calculated value is different from the standard electrode potential for Zn ²⁺ /Zn electrode. [2 marks]			
	Electrode potentialV			
	Reason			
		17		

13

		Do not unito
04	Ethanal reacts with potassium cyanide, followed by dilute acid, to form 2-hydroxypropanenitrile.	Do not write outside the box
04.1	Name the mechanism for the reaction between potassium cyanide and ethanal. [1 mark]	
04.2	The 2-hydroxypropanenitrile formed by the reaction in question 04.1 is a mixture of equal amounts of two isomers.	
	State the name of this type of mixture.	
	Explain how the structure of ethanal leads to the formation of two isomers.	
	Draw 3D representations of the two isomers to show the relationship between them. [5 marks]	
	Name	
	Explanation	
	3D representations	

04.3	2-Hydroxypropanenitrile can be used in the synthesis of the monomer, acrylonitrile, CH_2 =CHCN	Do not write outside the box
	Suggest a suitable reagent and conditions for the conversion of 2-hydroxypropanenitrile into acrylonitrile. [2 marks]	
	Reagent	
	Conditions	
04.4	Draw a section of the polymer polyacrylonitrile, showing three repeating units. [1 mark]	
		9
	Turn over for the next question	

		age by mass of iron in a	steel wire is	s determined	by a student	
	The student					
	wire form: • makes up • takes 25.0	0 mg of the wire with an s Fe ²⁺ (aq) the volume of the Fe ²⁺ (a 0 cm ³ portions of the Fe ² och portion with 0.0200 n	aq) solution ²⁺ (aq) solutio	to exactly 10	0 cm ³	
0 5.1	Give the equ	uation for the reaction be	etween iron a	and sulfuric a	icid.	[1 mark]
0 5.2	The titration	results are shown in Ta	ble 3. Table 3			
		Г				л
		Final volume / cm ³	1 22.90	2 45.60	3 22.60	-
			22.00	-		4
		Initial volume / cm ³	0.00	22.90	0.00	
		Initial volume / cm ³ Titre / cm ³	0.00 22.90	22.90 22.70	0.00 22.60	
	Calculate th			-		[1 mark]
	Calculate th	Titre / cm ³		22.70		[1 mark]



0 5.4	State the colour change seen at the end point of the titration. [1 mark]	Do not write outside the box
0 5.5	Name the piece of apparatus used for these stages of the method. [1 mark] Taking the 25.0 cm ³ portions	
	Adding the potassium manganate(VII) solution	
0 5.6	The balance used to weigh the 680 mg of iron wire has an uncertainty of ± 0.005 g	
	A container was weighed and its mass was subtracted from the total mass of the container and wire.	
	Calculate the percentage uncertainty in using the balance. [1 mark]	
	% uncertainty	6
	Turn over ►	

	Section B	D
	Answer all questions in this section.	
For each a correct Me	n to return to an answer previously crossed out, ring the answ	iswer as shown.
	do your working in the blank space around each question buise additional sheets for this working.	t this will not be marked.
0 6	Which amount of sodium hydroxide would react exactly M_2A ($M_r = 150$)?	with 7.5 g of a diprotic acid, [1 mark]
	A 50 cm ³ of 0.05 mol dm ^{-3} NaOH(aq)	0
	B 100 cm ³ of 0.50 mol dm ^{-3} NaOH(aq)	0
	C 100 cm ³ of 1.0 mol dm ^{-3} NaOH(aq)	0
	D 100 cm ³ of 2.0 mol dm ^{-3} NaOH(aq)	0

						ou	o not w utside i box
9	Which ch		higher concentrat $O_2(g) \rightleftharpoons 2SO_3(g)$		s equilibrium mixtu $\Delta H = -188 \text{ kJ mo}$		JUX
		2(0)				[1 mark]	
	A higher	concentration of	O ₂		0		
	B higher	temperature					
	C lower	oressure			0		
	D use of	a catalyst					
0	The resul	ts of an investiga	tion of the reacti	on between P ar	nd Q are shown in	this	
	table.	0					
		Experiment	Initial [P] / mol dm ⁻³	Initial [Q] / mol dm ⁻³	Initial rate / mol dm ⁻³ s ⁻¹		
		1	0.200	0.500	0.400		
		2	0.600	To be calculated	0.800		
	The rate	equation is: rate	$e = k [\mathbf{P}] [\mathbf{Q}]^2$				
	What is th	ne initial concentr	ation of Q in exp	periment 2?			
						[1 mark]	
	A 0.167				0		
	B 0.333						
	C 0.408						
	D 0.612						
	0.012						

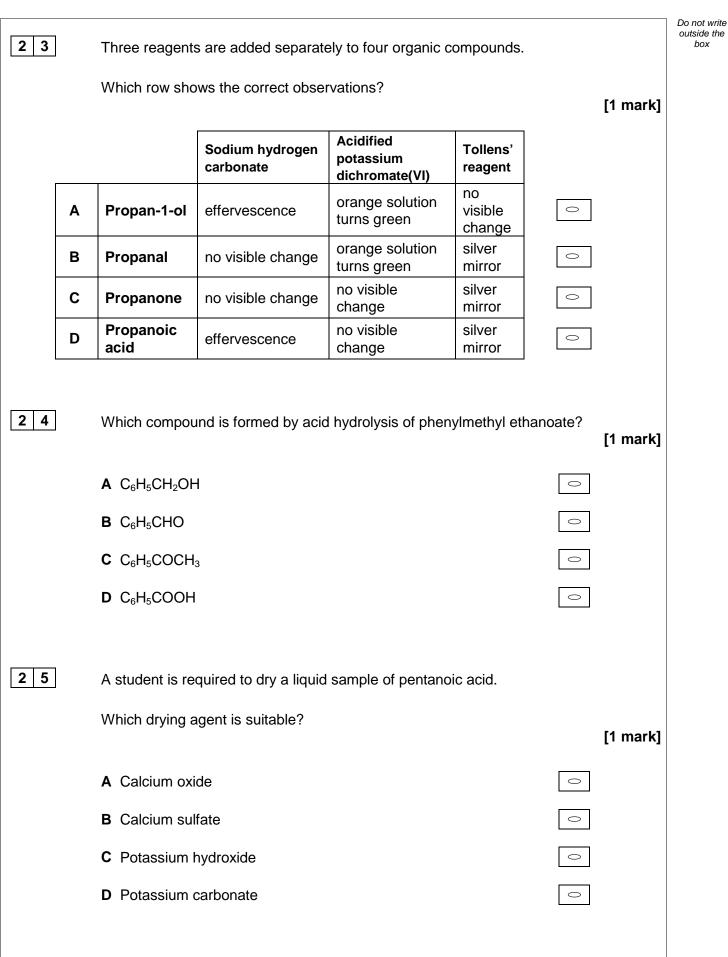
The equation for the reaction between sulfur dio	xide and oxygen is shown.
$2SO_2(g) + O_2(g) \rightleftharpoons$	≥ 2SO ₃ (g)
In an experiment, 2.00 mol of sulfur dioxide are the total amount of the three gases at equilibriu	
What is the mole fraction of sulfur trioxide in the	equilibrium mixture? [1 mark]
A 0.176	0
B 0.353	0
C 0.600	\bigcirc
D 1.200	0
Nitrogen reacts with hydrogen in this exothermic $N_2(g) + 3H_2(g) \rightleftharpoons$	
Which change increases the equilibrium yield of	ammonia but has no effect on the
value of the equilibrium constant K_{p} ?	[1 mark]
A Add a catalyst	0
B Increase the partial pressure of nitrogen	0
C Decrease the temperature	0
D Decrease the total pressure	

1 1

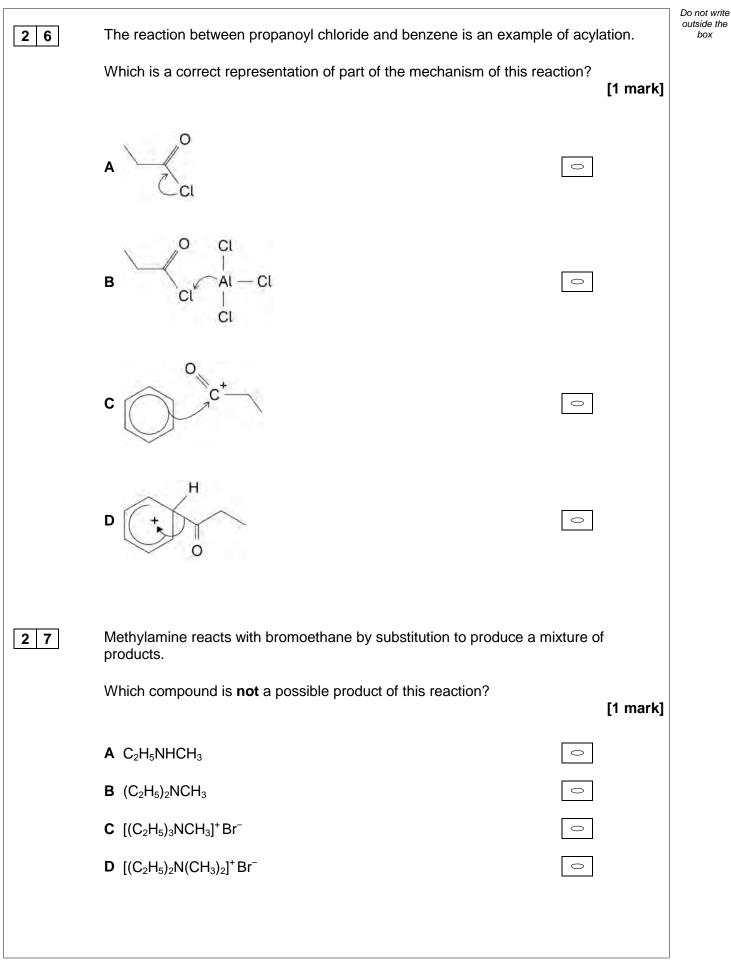
1 2

			Do not write outside the
1 3	The E° values for two electrodes are shown.		box
	$Fe^{2+}(aq) + 2e^- \rightarrow Fe(s) E^{\circ} = -0.44 V$		
	$Cu^{2+}(aq) + 2e^{-} \rightarrow Cu(s) E^{0} = +0.34 V$		
	What is the EMF of the cell Fe(s) Fe ²⁺ (aq) Cu ²⁺ (aq) Cu(s)?	[1 mark]
	A +0.78 V	0	
	B +0.10 V	0	
	C -0.10 V	0	
	D –0.78 V	0	
1 4	Which atom has the greatest first ionisation energy?		
		[1 mark	
	AH	0	
	B He	0	
	C Li	0	
	D Ne	0	
1 5	What is the correct observation when barium metal is added to an exc		_
		[1 mark	
	A Forms a colourless solution only	0	
	B Forms a colourless solution and effervesces	0	
	C Forms a white precipitate only	0	
	D Forms a white precipitate and effervesces	0	
1			1

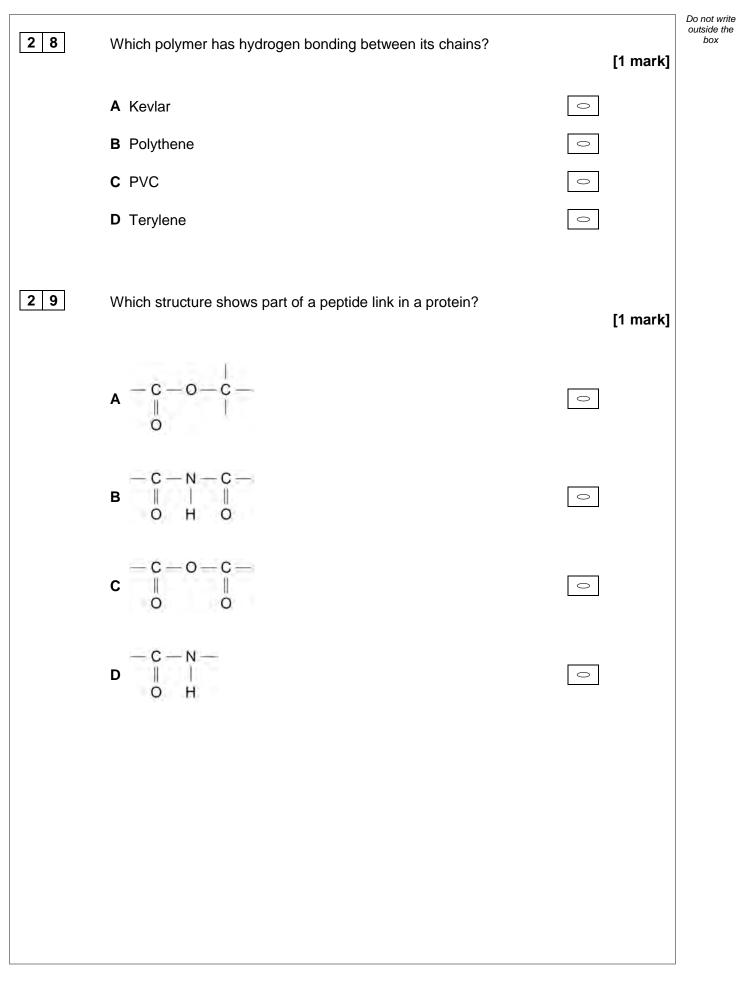
			Do not write
1 6	An aqueous solution of a salt gives a white precipitate when mixed w aqueous silver nitrate and when mixed with dilute sulfuric acid.	ith	outside the box
	Which could be the formula of the salt?	[1 mark]	
	A BaCl ₂	0	
	B (NH ₄) ₂ SO ₄	0	
	C KCI	0	
	D $Sr(NO_3)_2$	0	
1 7	Which statement is not correct about the trends in properties of the h from HCI to HI ?	nydrogen halides	
		[1 mark]	
	A The boiling points decrease.	0	
	B The bond dissociation energy of H–X decreases.	0	
	C The polarity of the H–X bond decreases.	0	
	D They are more easily oxidised in aqueous solutions.	0	
1 8	What is observed when concentrated hydrochloric acid is added to a solution of CuSO ₄ until no further change occurs?	n aqueous	
		[1 mark]	
	A A colourless gas is evolved and a precipitate forms.	0	
	B A colourless gas is evolved and no precipitate forms.	0	
	c A precipitate forms that dissolves in an excess of concentrated hydrochloric acid.	0	
	D The solution changes colour and no precipitate forms.	0	



19	 What is the most suitable reagent for detecting the presence of carbo presence of an excess of sulfate ions? A dilute NaOH(aq) B dilute H₂SO₄(aq) C BaCl₂(aq) D NaCl(aq) 	onate ions in the [1 mark]	Do not write outside the box
20	 Methylbenzene reacts with a mixture of concentrated nitric acid and concentrated sulfuric acid. What is the name of the mechanism for this reaction? A Electrophilic addition B Electrophilic substitution C Nucleophilic addition D Nucleophilic substitution 	[1 mark] 0 0 0 0 0 0 0 0 0	

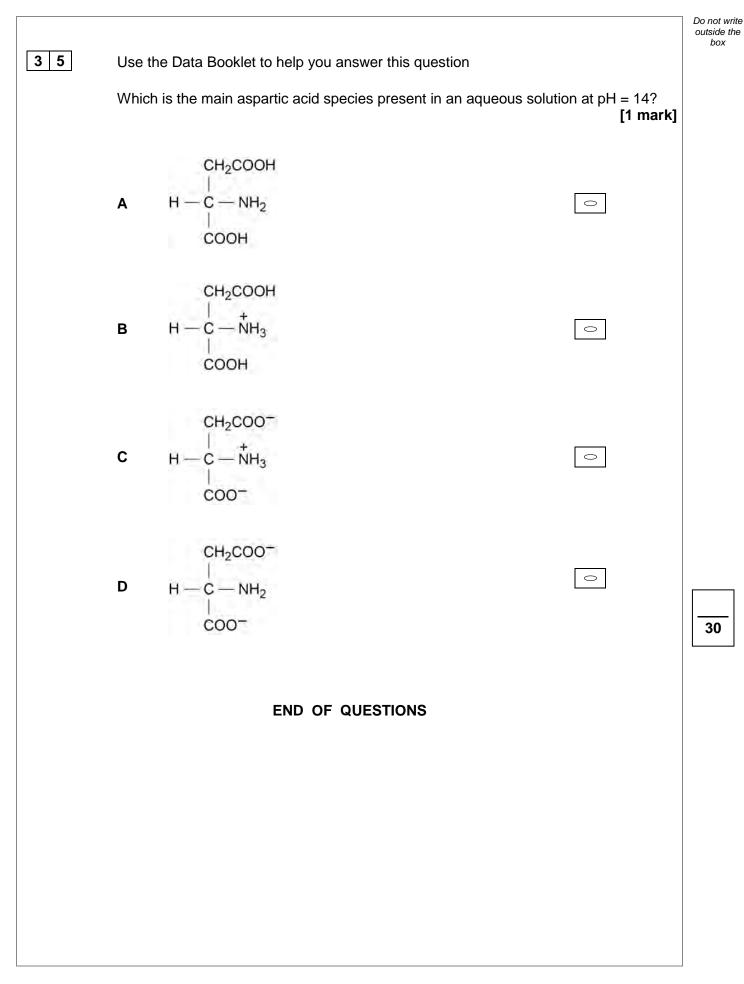


2 1	A possible synthesis of a compound found in jasmine flower oil is sl	nown.	Do not wr outside tl box
	$\bigcirc \longrightarrow \bigcirc \frown \frown \bigcirc \bigcirc \bigcirc \longrightarrow \bigcirc $	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
	Which mechanism is not used in this synthesis?	[1 mark]	
	A Electrophilic substitution	0	
	B Nucleophilic substitution	0	
	C Free-radical substitution	0	
	D Nucleophilic addition-elimination	0	
22	Which compound is formed when 1-phenylethanol reacts with acidified potassium dichromate(VI)?	[1 mark]	
	A C ₆ H ₅ CH ₂ CH ₂ OH	0	
	B C ₆ H ₅ CH ₂ CHO	0	
	C C ₆ H ₅ COCH ₃	0	
	D C ₆ H ₅ CH ₂ COOH	0	

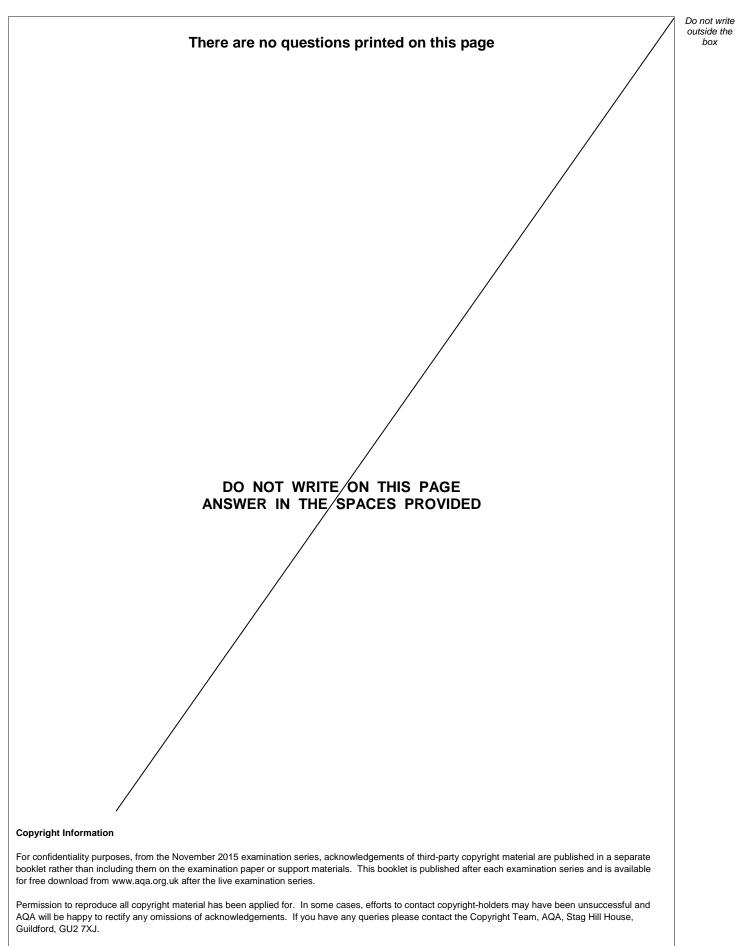


box

Do not write outside the Two strands of DNA are linked together by hydrogen bonding between bases on each 3 0 strand. Which row shows the number of hydrogen bonds between the pair of bases? Use the Data Booklet to help you answer this question. [1 mark] Number of Base 1 Base 2 hydrogen bonds Α 2 \bigcirc adenine guanine В cytosine thymine 2 \bigcirc \bigcirc С 3 guanine cytosine D thymine 3 adenine \bigcirc Which is not responsible for conduction of electricity? 3 1 [1 mark] A The sodium ions in molten sodium chloride \bigcirc B The electrons between layers of carbon atoms in graphite \bigcirc **C** The bonding electrons in a metal \bigcirc D The lone pair electrons on water molecules \bigcirc



Turn over ►


29

			Do not write
32	In the UK industrial ethanol is now produced by the direct hydration o process has largely replaced the fermentation method.	f ethene. This	Do not write outside the box
	Which is a likely reason for this change of method?	[1 mark]	
	A The direct hydration route produces purer ethanol.	0	
	B The direct hydration route employs milder conditions.	0	
	C The direct hydration route does NOT use a catalyst.	0	
	D The direct hydration route produces ethanol by a slower reaction.	0	
3 3	Which alkene reacts with hydrogen bromide to give 2-bromo-3-methy major product?	lbutane as the [1 mark]	
	A $(CH_3)_2C=CHCH_3$	0	
	B CH ₃ CH ₂ CH=CHCH ₃	0	
	C $CH_3CH_2C(CH_3)=CH_2$	0	
	D $(CH_3)_2CHCH=CH_2$	0	
3 4	Which compound can be purified by forming a hot aqueous solution the on cooling?	hat recrystallises [1 mark]	
	A Cyclohexene	0	
	B Ethanoic acid	0	
	C Phenylamine	0	
	D Benzoic acid	0	

Copyright © 2019 AQA and its licensors. All rights reserved.

IB/G/Jun19/7405/3